a2 United States Patent

US009450985B2

10) Patent No.: US 9,450,985 B2

Chieu et al. 45) Date of Patent: Sep. 20, 2016
(54) SERVER VALIDATION WITH DYNAMIC 2005/0172284 Al* 82005 Dandekar et al. 717/175
2006/0026463 Al* 2/2006 Paliwal et al. 714/37
ASSEMBLY OF SCRIPTS 2007/0022407 Al* 12007 Givoni et al. 717/124
(71) Applicant: International Business Machines 2008/0184200 Al* 7/2008 Burns ... GOGF 2/147‘22?
Corporation, Armonk, NY (US) 2009/0070771 A1* 3/2009 Yuyitung GO6Q 10/06
(72) Inventors: Trieu C. Chieu, Scarsdale, NY (US); OLL020290L AL* 82011 Givoni of al ;}5; igg
; . voni et al.
Robert Filepp, Westport, CT (US); 2012/0265726 Al* 10/2012 Padmanabhan GOGF 17/303
Brian L. Peterson, Ridgefield, CT 707/602
(US); Ratnasagar M. Ramaratnam, 2012/0284690 Al* 11/2012 Blakeley et al. 717/120
Chennai (IN) 2013/0247136 Al* 9/2013 Chieu et al. ... 726/1
R 2014/0053072 ALl* 2/2014 GUO ...ccoevvvevencnee. GOGF 9/468
(73) Assignee: International Business Machines He 715/736
Corporation, Armonk, NY (US) 2015/0052402 A1* 2/2015 Gurumurthy et al. 714/38.1
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
US.C. 154(b) by 0 days. WO WO2013056643 42013
OTHER PUBLICATIONS
(21) Appl. No.: 14/450,422
) Gai et al., “Cloud Testing—Issues, Challenges, Needs and Prac-
(22) Filed: Aug. 4, 2014 tice,” Software Engineering: An International Journal (SEIT), vol. 1,
No. 1, Sep. 2011, pp. 9-23.*
(65) Prior Publication Data Grundy et al., “Deployed software component testing using
dynamic validation agents,” The Journal of Systems and Software
US 2016/0036858 Al Feb. 4, 2016 74, 2005, pp. 5-14.*
Wikipedia, “Cloud Computing,” http://en.wikipedia.org/wiki/
(51) Int. CL Cloud__computing, Jul. 2014, 17 pages.
GO6F 9/445 (2006.01) Wikipedia, “Grid Computing,” http://en.wikipedia.org/wiki/Grid
HO4L 29/06 (2006.01) computing, Jul. 2014, 13 pages.
HO4L 29/08 (2006.01) . .
(52) US.Cl * cited by examiner
CPC oo, HO4L 63/20 (2013.01); HO4L 67/10 Primary Examiner — Wei Zhen
(2013.01); GO6F 8/60 (2013.01) Assistant Examiner — Andrew M Lyons
58) Field of Classification Search 74) Attorney, Agent, or Firm — Louis J. Percello; Ryan,
(58) v, Ag y
CPC ... GOGF 8/60; GOGF 8/63; GOGF 8/70; Mason & Lewis, LLP
GOG6F 8/73; HO4L 63/20 (57) ABSTRACT
ISJSPC 1t ﬁ]f 1t h7111.7/t1687178 Systems and methods for computer automated validation of
e application file tor compiete search ustory. server configurations are provided. A method for validation
(56) References Cited of a target environment, comprises assembling a validation
script from a plurality of script fragments, inserting the
U.S. PATENT DOCUMENTS assembled validation script into the target environment,
executing the validation script in the target environment,
5,751,941 A * 5/1998 Hinds et al. 714/38.14 gathering results of the executing, and reporting the results
7,076,534 Bl 7/2006 Cleron et al. 1o at least one user.
2003/0182656 Al* 9/2003 Leathers et al. 717/177

2005/0066015 Al 3/2005 Dandekar et al.

115
1

13y 07y

16 Claims, 9 Drawing Sheets

EXTERNAL
MGMT

REPORTING
MODULE

MODULE

104,

SERVER
BULLD AND

INFORMATION

VALIDATION TARGET
MODULE
3

AUTHORS/
ADMINISTRATORS

SCRIPT

US 9,450,985 B2

/109

EXTERNAL
MGMT
SYSTEMS

A

yau

U.S. Patent Sep. 20, 2016 Sheet 1 of 9
FIG. 1
100
15 Vs 105
USER OR
REPORTS TRIGGERING
EVENT
13y 07y | |
REPORTING | VALIDATION |
MODULE | MODULE)
f 3
104
)r-n—\ /_'_ﬂl'b
N N’e—
SERVER
BUILD AND
REQUEST DATABASE
INFORMATION
— ~—
[102
PREPARATORY
MODULE
/101
SCRIPT
AUTHORS/
ADMINISTRATORS

TARGET
MODULE

U.S. Patent Sep. 20, 2016 Sheet 2 of 9

205

FIG. 2

REQUESTER: ValidationServer:

US 9,450,985 B2

207 20 09 M N3

: 1: ValidationRequest :

7 1.1: EXTERNAL QUEREES 1 I
: 250 2527 :
I | _1.2: EXTERNAL QUERIES I
I 2537 1.3 COPY ValidationServer 1
" PUBLIC KEY TO TARGET I
I 2547 1.4: COPY ValidationServer
| . _ __EU_Bl.I_C_IiE_Y_T_O_IARGET_ ______ -
I 255 1
I {.5: PUSH SCRIPT TO TARGET .
: 2567

1.6:ACK g
: w7y }
I 1.7: INVOKE SCRIPT .
I 2587
I
_________ 18 ACK y |

: 7597 " H
" 1.9: GET SCRIPT OUTPUTS AND CLEANUP o
" 2607
1 PR 1 _1_0_§C_R_IBT_9QTPUT_S _______
I 261 H

EXTERNAL TARGET | | EMAIL
MGMT SYSTEMS: | | SERVER: | | SERVER:
T |

1.2Z: RESPONSE_MSG H I
1270 I I
1 3 | |
GetActivationStatus?request_id= | |
1
1 2807 3.1 EMAIL SCRIPT AND |
I EXTERNAL DB RESULTS 10 CONTACTS
| 7
I 282 3 2: EMALL SCRIPT AND |
I ___ EXTERNAL DB RESULTS TO CONTACTS _____
I 283 1 T
I 3.3: NOTIFICATIONS T0 1
I EXTERNAL MGMT SYSTEMS _, I
I 847 I
" 3.4: NOTIFICATIONS T0 I
I | EXTERNAL MGMT SYSTEMS I
I 2857 | I
I
1 RESPONSE WSG, | I
. 290 1 1

| fu e e e e e N

US 9,450,985 B2

Sheet 3 of 9

Sep. 20, 2016

U.S. Patent

SSD|IqNS =
] | e | e P
_ pajoaiogg | | piTjssnbalzs| |uoisioAaiDA}0S g u_on:cewﬁﬂ.__meu@
UOISJOA BIDA}J0S B 9)0)s=y| | slubu—eJomijosey . n_Jm__v_ow%M
aWDUIDA]}0S 25 adly =5 $SD[9=S) S =
e | ahs | e st s
_alnlgs| | pIrjsiosYR=s =o_a_smemM .Edw%g:w
== Pl [0qojb= pI)duds = }5nbaY" ANVSMINE |-—{============-o oo mmmmmmmmmmm - 1
8|4PUDA H SIPQOIHH SLEN st = “
ss) | T . PeyDpdn s CIDKWS X SOMNOSE |
N [] Jd e T —
m pefpei2ca uondssepcs m pi-BJloo Jokies g
100dn I 676~ lNDARS pI—uonsanbzg ! c.s;tomglc_zoodazomm]
wnwﬁm_.%m m mwﬂ__mﬂw G7¢ | uonsenpH S_Mstw ~--- AN m
1 L I .
EJmmv__v_wMﬁM soi- ! ujol- v_|_mw._.M . mwwﬁwnw § A.m
wo__.g|~_m : uor® -~ payopdnzg SSD|I pIDijuosIsniss g
< Lo o mmmmmm e - _pejede pINN ez piNNe=g
AN Mzzg 178 P sefpiedoud __ésmmmmw 3I0A)}0SE J68Nboy
oes/ ——t uoydiosepz, gos / e/
A peyopdn [+~ PISI8YO =
D8J2
el eS| | prseynguyo tiodais HFEIE
 718100] g - | PI3SI| uolhguysiprag { 1SINDI NOLLYALLIY ¥3d
Jisjootm :o_ﬁ___mww = pajopdngg
fRlpoades prifhaso s R s
= PIMN gy -~ — - - - - ﬂd_#_._omouw ||||||||| ~ Pl 00%
¢1c A m33§<|tow.$_m SerPadol] UOI)DYUasaId [T = U= s
gig T 105 |99 §0¢ 3020y 5 & 914

U.S. Patent

Sep. 20, 2016 Sheet 4 of 9

FIG. 4
400

401

ADD QUESTION DETAILS

!

403 A

RUN A FUNCTION TO INSERT
QUESTION INTO A DATABASE

405

409

DOES

US 9,450,985 B2

Vs 407

THE SCRIPT FRAGMENT

EDIT SCRIPT FRAGMENT

NEED EDITING?

/411

LITERALS
ARE BEING REPLACED
BY VARIABLES?

RUN A FUNCTION TO
INSERT VARIABLES
INTO A DATABASE

NO
413 DETERMINE SCRIPTLET
!
415~ ADD SCRIPTLET DETAILS
!
417 A RUN A FUNCTION TO INSERT
SCRIPT INTO A DATABASE
!
419 RUN JOINER JOINING
QUESTION TO CHECKLIST
!
491 A RUN JOINER JOINING
SCRIPTS TO QUESTIONS
!
43 RUN JOINER JOINING

LITERALS TO QUESTIONS

U.S. Patent Sep. 20, 2016 Sheet 5 of 9 US 9,450,985 B2

FIG. 5 / REQUEST /501
!

OBTAIN PARAMETERS
AND WRITE VARIABLES | 503
T0 DATABASE

707

OBTAIN DATA FROM
EXTERNAL SOURCES | YES EXTERNAL
|’ AND WRITE VARIABLES DATA SQURCES

305

10 DATABASE

NO RULES WERE MET
NOTIFY AND END

IS
RULE SATISIED
YES

213

ARE
THERE QUESTIONS
FOR CH'ECKLIST

NO

515y V
ADD HELPER FUNCTIONS,
VARIABLES, AND ENTRY POINTS
TO SCRIPT BEING ASSEMBLED

5174 '

GENERATE ASSEMBLED SCRIPT

519

(' END ASSEMBLY)
NO

a2

SCRIPT

FRAGMENTS FOR

QUESTION
?

RULES
FOR SCRIPT FRAGMENT
?

525

IS

RULE SATISFIED >N
?

&5 , 327

ADD SCRIPT FRAGMENT TO
SCRIPT BEING ASSEMBLED
AND ADD ENTRY POINT

I

US 9,450,985 B2

Sheet 6 of 9

Sep. 20, 2016

U.S. Patent

SIINSH
JH0LS
NV “NO
14043

L09 y

(A)

(A

SIndLnO
1dI¥3S
IAIHLTY

G09 y

009
9 9Id

1dI¥0S
IIOANI

£09 y

AN

1394VL 0L “ANY
AL ‘ST ¥3d13H NV
1dI¥OS Q318NISSY HSNd

1097

U.S. Patent Sep. 20, 2016 Sheet 7 of 9 US 9,450,985 B2

FIG. 7
700

#© Copyright IBM® Corporation 2011. All rights reserved.

Linux_q2_3()
%
shc_1line_question_html *“§Linux_q2_3_lit_01”
if [-f /etc/login.defs]
then
shc_1line_output_description_html *“$Linux_q2_3_lit_02"
shc_compliant_status_html
complcount="expr $complcount + 1’

min_age=‘grep ~PASS_MIN_DAYS /etc/login.defs’
set —— $min_age
min_age=$2
if [$min_age -eq $Linux_q2_3_lit_03]
then
she_1line_output_description_html “§Linux_q2_3_lit_04"
shc_compliant_status_html

complcount="expr $complcount + 1’

else
echo “$Linux_q2_3_lit_05" >> /tmp/Non-Compliant-List.$$
shc_1line_output_description_html “§Linux_q2_3_lit_05"
shc_non_compliant_status_html
noncomplcount="expr $noncomplcount + 1’

fi
rm —f /tmp/q2_3.4$

done
else

echo “$Linux_q2_3_lit_07" >> /tmp/Non-Compliant-List.$$

shc_1line_output_description_html *“$Linux_q2_3_lit_07"

shc_non_compliant_status_html

noncomplcount="expr $noncomplcount + 1’

US 9,450,985 B2

Sheet 8 of 9

Sep. 20, 2016

U.S. Patent

INVITdNO) 918/ NO AT¥3dOdd 13S SNOISSINY3d
INVITdNO) Isn/ NO AT43dO¥d 135 SNOISSINYId
INVITdO) / NO KT43d0dd 13S SNOISSINY3d
407000 U0 papnoazy suosswuad fuogoansq/and 1 B

LG N ISIX3 10N S300 114
L0700d uo pamoazy piomssod - Angmuapyfuod pup uopejud uoryrwaful § p
INVI1dNOJ 1034400 ST 24yspq/%38/ NI ONILLIS NSYAN 1vE019
INVI1dWOD NOISSINY3d LOFUH0D HLIM 3593/owoy/ KNOLOFMIA INOH IS3L -¥3sn
INVT1dWO0D NOISSINYd LO3¥¥00 HLIM 9004/ AYOLOFMIO IWOH LOOY -¥3sn
Lorod uo pamaazy || YSDUN (PQof) Pup Siasn i Jof sawopaip FHOH 4of buryoay) g b
INVTIdH0? IN3S34d SI enssi/a3s/ Jo proul/aje/

Lo100d uo pamoazy

Nog - pow/2a/ sof yoay) g B

J0100d uo pamoary

oS zwun"wod Jo Lajauwnind 47

INVI1dWO0J

'AVQ 1Y 135 39V NNNININ QHOMSSYd

INVT1dWO0J

SISIX 3104 syep'uiboj/28/

Lot00d uo pamoazy

aby puomssng wnWMUK £7 B

an01d 404 NOILdIOXT VAOTD - INVITNOD

06 1V 13S 10N NOLLVHIdX3 (QYOMSSYd 100d -¥3Sn

INVI1dWO0J "SAVQ 06 1V 13S SAHOMSSYd
4orod uo pamaazy WIS uoLIDRIUAYMY |7 B
ANVT1dWOJ sQIn 3nDINN

Lotood uo pamoazy

puiasy 1 b

008
& 9Id

U.S. Patent Sep. 20, 2016 Sheet 9 of 9 US 9,450,985 B2

FIG. 9
910
912
COMPUTER SYSTEM 98
MEMORY 934
[930 7 3
7318 RAV STORAGE
SYSTEM
PROCESSING UNIT
‘ [0
o 9
. ~{=<—={ CACHE ﬂ
| m 9
NETWORK
1/0 INTERFACE(S) AAPTER
EXTERNAL
924 DISPLAY | | eioes [~ 914

US 9,450,985 B2

1
SERVER VALIDATION WITH DYNAMIC
ASSEMBLY OF SCRIPTS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

The field generally relates to systems and methods for
managing computing utilities and, in particular, systems and
methods for computer automated validation of server con-
figurations.

BACKGROUND

Recently, there appears to have been a shift from the
de-centralization of information processing to increased
platform centralization and platform management, as well as
a renewed interest in computing as a utility. These trends are
illustrated by efforts to centrally manage grid computing
facilities, in what appears to be a rising popularity of
virtualization products, and an emphasis on cloud comput-
ing. Each of these technologies attempt to execute a migra-
tion of workloads to platforms where the workloads may be
the most efficiently managed and the most effectively
executed. The rationale behind these technologies is gener-
ally one of cost savings.

SUMMARY

In general, exemplary embodiments of the invention
include systems and methods managing computing utilities
and, in particular, systems and methods for computer auto-
mated validation of server configurations.

Embodiments of the present invention describe server-
side composition of scripts, which will be executed on a
client. In accordance with embodiments of the present
invention, scripts are assembled for delivery to and execu-
tion by a client. The scripts that are assembled are capable
of being delivered to, and executed in the client environ-
ment, not in the server environment. Accordingly, the assem-
bly engine is cognizant of the operating system and other
characteristics of the client device and assembles its scripts
appropriately. For example, scripts that are assembled for
execution on Windows® clients are written in a language
that can be executed on Windows® platforms, while scripts
assembled for execution on a UNIX® system are written in
a language which can be executed on a UNIX® platform.
Further, in accordance with embodiments of the present
invention, the script functions that are assembled for deliv-
ery are assembled in a specific order.

Embodiments of the present invention provide methods
for passing information between script functions once they
are assembled, and for dynamically inserting commands to
execute the script functions into the script during the assem-
bly process, so that a client can eventually execute a
downloaded script.

According to an exemplary embodiment of the present
invention, a method for validation of a target environment,
comprises assembling a validation script from a plurality of

15

20

25

30

35

40

45

2

script fragments, inserting the assembled validation script
into the target environment, executing the validation script
in the target environment, gathering results of the executing,
and reporting the results to at least one user.

According to an exemplary embodiment of the present
invention, a system for validation of a target environment,
comprises a validation module capable of assembling a
validation script from a plurality of script fragments, and
inserting the assembled validation script into the target
environment, a target module capable of executing the
validation script in the target environment, wherein the
validation module is further capable of gathering results of
the executing, and a reporting module capable of reporting
the results to at least one user.

According to an exemplary embodiment of the present
invention, a computer program product for server validation,
comprises a computer readable storage medium having
program instructions embodied therewith, the program
instructions executable by a processor to cause the processor
to perform a method comprising assembling a validation
script from a plurality of script fragments, inserting the
assembled validation script into a target environment,
executing the validation script in the target environment,
gathering results of the executing, and reporting the results
to at least one user.

These and other embodiments of the invention will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will be
described below in more detail, with reference to the accom-
panying drawings, of which:

FIG. 1 is a block diagram of an automated server con-
figuration validation system, according to an exemplary
embodiment of the present invention.

FIG. 2 is a steady state message sequence diagram,
according to an exemplary embodiment of the present
invention.

FIG. 3 is an entity relationship schema showing the data
entities used in accordance with exemplary embodiments of
the present invention.

FIG. 4 is a flowchart diagram illustrating administrative
steps to populate a library of reusable script fragments,
according to an exemplary embodiment of the present
invention.

FIG. 5 illustrates a flow diagram for assembly of a script,
according to an exemplary embodiment of the present
invention.

FIG. 6 illustrates a process flow performed after script
assembly, according to an exemplary embodiment of the
present invention.

FIG. 7 is a sample of a script fragment, according to an
exemplary embodiment of the present invention.

FIG. 8 is an excerpt from a validation result report,
according to an exemplary embodiment of the present
invention.

FIG. 9 illustrates a computer system that may be used to
implement one or more components/steps of the techniques
of the invention, according to an exemplary embodiment of
the invention.

DETAILED DESCRIPTION

Exemplary embodiments of the invention will now be
discussed in further detail with regard to systems and

US 9,450,985 B2

3

methods for managing computing utilities and, in particular,
to systems and methods for computer automated validation
of server configurations. This invention may, however, be
embodied in many different forms and should not be con-
strued as limited to the embodiments set forth herein.

Time Sharing Service Bureaus provided a form of what is
referred to as a Platform As A Service (PAAS), providing an
infrastructure whose cost could be shared across customers
such that the cost to each customer might be less than the
cost of independent ownership.

Grid computing utilizes computer resources from a plu-
rality of administrative domains to reach a common goal,
and attempts to reduce cost by increasing efficiency. Grid
computing takes advantage of available computing
resources, which are not being used, and incorporates the
unused resources into a network in which workloads could
be appropriately placed as computing resources become
available.

Virtualization is an enabling technology designed to assist
in the migration of a workload to a more centralized, more
efficiently managed platform. Cloud computing delivers
computing as a service, providing shared resources, soft-
ware, and information to computers and other devices over
a network. Cloud computing, therefore, is another vehicle
providing an infrastructure whose cost can be shared across
customers, so that the cost to each customer may be less than
the cost of independent ownership.

In order to realize the potential benefits offered by
increased platform centralization and centralized platform
management, existing workloads must be migrated into
those environments including the more efficiently managed
platforms. The migration process involves various steps,
including, but not necessarily limited to: (a) thoroughly
understanding an existing source environment; (b) evaluat-
ing target platforms with regard to their ability to sustain
workloads; (c) customizing the target systems, as needed, to
accept workloads; (d) performing a validation process of a
target platform configuration to ensure that security risks are
mitigated and that the platform is configured to meet
requirements; (e) providing a mechanism to move a work-
load to a target platform; and (f) performing a further
validation to ensure that a workload functions properly in its
new environment.

The step (d) of validating a target platform configuration
may be complex and very time consuming since, for
example, requirements may vary from customer to customer
and workload to workload, and may change over time. In
addition, the step (d) may rely on systems administrators to
run a variety of operating system commands and other
systems management tools, capturing screenshots of out-
puts, making declarations that necessary tasks been per-
formed and attesting to their results. These results may be
subject to review by auditing agencies in order to assure
compliance with contractual agreements. In some instances,
the step (d) can take days or weeks to complete, and the
results may ultimately be inaccurate. Therefore, in order to
improve the timeliness and accuracy with which computing
utility services may be realized, embodiments of the present
invention provide methods and systems for automating
target server configuration validation.

In accordance with an embodiment of the present inven-
tion, a system dynamically invokes external agencies to
supply any required data that is unavailable to a local
system, and merges this data into a validation script. The
required data includes, but is not necessarily limited to,
registration of the target server with inventory management
systems, with security scanning systems, results of security

10

15

20

25

30

40

45

50

55

60

65

4

scans, frequency of security scans, and registration of user
accounts with account maintenance systems. The validation
script is dynamically assembled from a library of re-usable
script fragments appropriate to the characteristics of target
servers, and which are also appropriate to stated require-
ments of the customer at hand. Additionally, the system
inserts the assembled script(s) into the target server, executes
the scripts, gathers the results, stores information about the
validation attempt in a repository, generates reports, and
notifies a list of users and management systems as to the
validation attempt results.

Configuration policies refer to policies that describe an
agreement between customers and service providers as to
the specifics of server configurations. Validation of a target
platform configuration, in accordance with an embodiment
of the present invention, ensures that a provisioned server
meets specific and contractually agreed upon configuration
policies. Policies may vary within a customer account, per
geography, per department, or per any other criteria that has
been agreed upon by the customer and service provider. For
example, a customer might require passwords to be 8
characters long for servers in a first geographical region, and
10 characters long for servers in a second geographical
region. Such policies might be effectively expressed as
scripts, which incorporate parameterization to avoid unnec-
essary duplication of scripts.

In some cases, the steps which must be taken to validate
configuration parameters will vary between platforms. For
example, a relatively simple example of a subset of the
validation tasks might include validating a minimum user
account password length enforced by a system. To perform
this validation on, for example, a Linux® operating system,
a systems administrator may need to issue the command
“grep”PASS_MIN_LEN/etc/login.defs”, print the results to
an output file or capture the terminal display results, and
include those outputs and results in a document showing
evidence of compliance validation. For Windows® 2008
systems, the minimum password length enforcement may be
validated by executing a “net accounts” command, parsing
the output to find the value prefaced by “Minimum password
length:”, and capturing and reporting the results. For AIX®
systems, a minimum password length enforcement may be
validated by executing the command “lsuser” per user,
finding the “minlen” stanza, and capturing and reporting the
results. Each of these three operating systems has a unique
way of obtaining the minimum password length enforced on
the server. Embodiments of the present invention are con-
figured to handle steps for validating configuration param-
eters that vary between platforms.

In other cases, the steps which must be taken to validate
configuration parameters, may be shared between all plat-
forms. For example verifying the registration of a target
server with other management systems may require invoca-
tion of a secondary process, which interrogates an external
database as to the registration status of the target server,
retrieves the results, and reports the results, all of which
steps can be indifferent to the target server platform specif-
ics. Embodiments of the present invention are configured to
handle steps for validating configuration parameters that are
shared between platforms.

In some cases, identical steps, which must be taken to
validate configuration parameters, may be shared between a
subset of generally similar, but not identical, platforms. For
example, Linux® and AIX® are both variants of the UNIX®
operation system. Linux® and AIX® may share a common
step to validate whether they permit empty passwords by
issuing a generic Unix® command ‘grep* PermitEmptyPas-

US 9,450,985 B2

5

swords”/etc/ssh/sshd_configlawk*{print $NF}”, retrieving,
parsing, and reporting the results. There is no need to
duplicate this step between Linux®, AIX®, and other
UNIX® systems, and it may be re-used. Embodiments of the
present invention are configured to recognize where steps
for validating configuration parameters can be re-used.

Embodiments of the present invention are configured to
address several dimensions of complexity. For example,
validation steps may be invoked in a certain sequence that
reflects a variety of customer policies, and may be affected
by variations between platforms. Some validation steps
might potentially be common across all platforms, but may
need to be tailored to accommodate varying customer poli-
cies. Some validation steps might be common within general
platform families, or may be specific to platforms, but
common across customer implementations. Because there
are affinities and compatibilities between families of plat-
forms and other software, embodiments of the present
invention recognize that the mechanics of validation steps
can often be shared across varying platforms and other
software.

Validation policies may vary along many axes including,
but not limited to, customers, geographies, operating sys-
tems, and installed middleware. In order to improve the
timeliness and accuracy with which computing utility ser-
vices may be realized, embodiments of the present invention
provide methods and systems to more fully automate server
configuration validation, which increases flexibility, encour-
ages the use of parameterization, and which facilitates the
sharing and re-use of validation steps.

According to embodiments of the present invention, an
automated server configuration validation system and
method are described, including an administrative proce-
dure, a preparatory procedure, and a steady-state operational
procedure. The administrative procedure includes steps such
as defining customer account information, specifying
desired report layouts and media, and defining report recipi-
ents. The preparatory procedure includes a phase in which a
library of script fragments is created, and in which external
and internal data variables are declared. The preparatory
procedure also includes another phase in which customer
requirements are codified as a set of questions, which are to
be answered by a selection of script fragments to be
executed in a specified relative order, and in which data
variables are associated with the selected script fragments.
This phase may also include associating data variables with
external functions, which may populate the data variables.

In accordance with embodiments of the present invention,
during the operational procedure, when the system is
invoked, it is given a reference to a target environment to be
validated. The target environment includes, for example, a
target server and any other platform configured to run a
workload. The system obtains any required variable infor-
mation related to the target environment (e.g., target server)
from external sources and stores that information as declared
in the preparatory phase. The variable information includes,
but is not necessarily limited to, registration of the target
server with inventory management systems, with security
scanning systems, results of security scans, frequency of
security scans, and registration of user accounts with
account maintenance systems. The system then dynamically
assembles validation scripts from a library of re-usable
script fragments as appropriate to the characteristics of the
target environment (e.g., target server), and as appropriate to
the stated policies of the customer concerned, as codified in
the preparatory procedure. As part of the script assembly, the
system prepares and includes script variable definitions

20

30

40

45

6

based on any required variable data stored in the prior step.
This provides a means to pass information from external
sources to the assembled script. The system then inserts the
assembled script(s) into the target server, executes the
script(s), gathers the results, stores information about the
validation attempt in a repository, generates reports, and
notifies a list of users and management systems as to the
validation attempt results.

In accordance with an embodiment of the present inven-
tion, an understanding of the general configuration of a
target server can be assumed and may be input as additional
criteria for the selection and assembly of appropriate script
fragments. The understanding of the general configuration
of the target server may be obtained from any of a variety of
well-known configuration discovery and management tech-
niques. In an embodiment, representations of high-level
configurations of target servers are stored in a database. This
information may be used at a high level to help drive the
conditional assembly of script fragments based on a target
server’s operating system. At a finer level, this information
may be used to help drive the conditional assembly of scripts
addressing specific middleware. The dynamic conditional
assembly of script fragments may be influenced by addi-
tional factors, such as the owning customer, the geographic
location of the target server, and local legal requirements.

FIG. 1 illustrates a block diagram of a system for vali-
dation of a server configuration, according to an exemplary
embodiment of the present invention. The system 100
includes a database 103. In administrative and preparatory
phases, a preparatory module 102, based on input from
script authors and/or administrators 101, creates and popu-
lates the database 103 with, for example, script fragments,
rules for assembling the script fragments, references to
external processes, variables, questions, checklists, joins
(relationships) and customer account policies. A use or
triggering event 105 from a requesting entity, such as, for
example, a validation request, triggers the validation module
107 (e.g., a validation server) to invoke external processes,
if any, from external management systems 109, and to
assemble a validation script from script fragments from the
database 103. The validation module 107 transfers and
inserts the assembled script to a target module 111 (e.g., a
target environment/server), and records execution of the
script on the target module 111. The validation module
gathers the results of the execution on the target module 111,
transmits the results to a reporting module 113 (e.g., an
email server), which provides result reports 115 to desig-
nated users.

The system 100 further includes a repository 104 for
information about a validation request, such as, for example,
who made the request, when was the request made, who
owns the server from which the request originated and what
account does the server belong to. A repository 104 also
includes specifications for a target server(s), which may be
built or provisioned, including, for example, the operating
system of the server(s), user accounts, file systems, disks,
network addresses, and middleware.

The validation module is further capable of determining
that the script fragments correspond to characteristics of the
target environment, and of invoking an external source to
supply the characteristics of the target environment. The
validation module 107 is also capable of declaring a plural-
ity of data variables in the script fragments, and populating
the data variables with values obtained from an external
source.

The validation module 107 also codifies a plurality of
customer requirements as a set of questions, and uses one or

US 9,450,985 B2

7

more of the script fragments to answer the set of the
questions. In accordance with an embodiment of the present
invention, the validation module 107 obtains parameters for
the validation script and writes variables to a database,
queries whether any checklist rules correspond to one or
more of the variables, and scopes the variables at least one
of globally, to a checklist and to a request. When a checklist
rule corresponds to one or more of the variables, the
validation module 107 queries whether the checklist rule has
been satisfied, and selects a checklist having the satisfied
checklist rule.

Communications between components of the system 100
can be performed via a network, such as, for example, a local
area network (LAN), wide area network (WAN), cellular
network, satellite network or the Internet.

FIG. 2 illustrates message flows 200 during an operational
phase, according to an exemplary embodiment of the present
invention. FIG. 2 includes blocks for a requester 205,
validation server 207, external management systems 209,
target server 211, and e-mail server 213, which correspond
to similarly numbered elements of system 100 in FIG. 1. A
validation request 250 is sent from requester 205 to valida-
tion server 207. The validation server 207 sends external
queries 252 to external management systems 209, which
provide a response(s) to the external queries 253 back to the
validation server 207. The external queries include, for
example, request for information from the external systems
to put in scripts, including, but not limited to, script param-
eters such as, customer account ids, geography and middle-
ware installed on a target.

The validation server 207 sends a request to copy the
validation server public key 254 to the target server 211, and
receives a response to the request 255 from the target server
211. With this exchange, the validation server 207 is
addressing security concerns, such as obtaining the authority
to push scripts out to and execute those scripts on the target
server 211. The validation server 207 pushes assembled
scripts 256 to and invokes scripts 258 on the target server
211, and receives acknowledgement 257, 259 from the target
server 211 that a pushed script has been received and a script
has been invoked.

The validation server sends a request for script outputs
and clean-up of temporary files 260 to the target server 211,
and receives, via a file transfer mechanism, script outputs
261 from the target server 211. The validation server 207
sends a response message 270 to the requester 205 regarding
the status of the validation request 250 and any script outputs
261.

The requester 205 sends a request for the activation status
280 to the validation server 207, and the validation server
207 sends a request 282 to the e-mail server 213 to email the
script and external database results to the contacts. The
e-mail server 213 sends a response 283 to the request back
to the validation server 207. The response includes an
indication that the e-mail to the contacts has been sent, or
that there has been a problem with sending the e-mail.

The wvalidation server 207 sends notifications 284 to
external management systems 209. The notifications may
include, for example, problems with the activation and/or
validation. The external management systems 209 respond
to the notifications 285, and a response message 290 includ-
ing, for example, the activation status, is sent from the
validation server 207 to the requester 205.

FIG. 3 illustrates a schema 300 of the database 103,
according to an exemplary embodiment of the present
invention. The schema 300 includes a location for details of
a request 301, which includes storage areas for a universally

15

30

40

45

8

unique identifier (uuid) and server_config_id, a location for
target Server_Config_X_Software 303, which includes stor-
age areas for server_config_id and software_id, a location
for Software 309 of a target, which includes storage areas for
uuid, class, operating system class (osclass), name and
version, and a location for Software_X_Software 311. In
brief, the locations 301, 303, 309 and 311 include an
operating system and middleware for a target environment.
In accordance with an embodiment of the present invention,
operating systems and middleware are contained in the same
database table (called Software). Software_X_Software is a
join table used to express the relationships between various
softwares. For example, a software Windows® 2008 and a
software Word® 2003 can be permitted to be linked to each
other, expressing a relationship: tablel=software,
valuel=Windows 2008, table2=software, value2=Word
2003.

The schema 300 further includes a location for account
holder details 305, which includes storage areas for 1D,
name, created and updated, a location for geographical
information 307, which includes storage areas for ID,
description, account_id, created and updated, a location for
Presentation_Properties 313, which includes storage areas
for wuid, account_id, geo_id, description, distribution_lis-
t_id, report_attributes_id, created and updated, and a loca-
tion for Report_Atrributes 315, which includes storage areas
for uuid, headingl, heading?2, footerl, footer2, filel_prefix,
file2_prefix, created and updated. Presentation properties
describe what metadata should go into a report, and report
attributes describe how to format information in a report
back to a user.

The schema further includes a template area 320, which
includes a location for checklist data 321, which includes
storage areas for checklist_id, description, geo_id, presen-
tation_properties_id, created and updated, a location for join
data 323, which includes storage areas for join_id, step,
tablel, table2, valuel, value2, created and updated, a loca-
tion for question data 325, which includes storage areas for
question_id, name, description, text, created, updated, rules,
rule_id, checklist_id, rule, created and updated, and a loca-
tion for scripts data 324, which includes storage areas for
script_id, description, body, name, class, software_name,
software_version, created, updated and subclass. The tem-
plate area 320 further includes a location for NEWSAN-
D.Request 327, which includes storage areas for request_id,
ip_address, state, checklist_id, external request_id, host-
name, created and updated, a location for Globals 326,
which includes storage areas for global_id, checklist_id,
name, value, type, state, request_id, created and updated, a
location for rules 322, which includes storage areas for
rule_id, checklist_id, rule, created and updated, and a loca-
tion for variables 328, which includes storage areas for
literal_id, name, text, class, software_name, software_ver-
sion, created and updated. NEWSAND.Request refers to a
database table that has a row for every validation request that
is entered. Globals are variables that are associated with an
entire checklist, rather than with a specific question.

With reference to FIG. 3, customer account information,
policies, contact information, and reporting preferences are
stored in a database. Script fragments are stored in a
database and contain, for example, a name, an id, the script
fragment content, and information regarding the script frag-
ment’s appropriate usage, such as platform types with which
it is compatible, and which categories of function it
addresses.

References to external functions, which are invoked to
retrieve and store data into variables, are stored in the

US 9,450,985 B2

9

database and used to drive the population of variables as
needed. These references include such information as execu-
tion path and execution file name. Variables are stored in a
database and contain, for example an id, content in string
form, an indication as to the content type of the variable,
such as “string” or “integer”, an indication as to whether the
variables are scoped globally, scoped per checklist, or
scoped per request instance, or scoped to some other con-
text. The scoping of a variable refers to the contexts to which
a variable instance applies. A globally scoped variable
maintains a single instance whose value may be referenced
from any script fragment. A variable that is scoped to a
checklist maintains an instance per checklist, which may be
referenced only from within the specified checklist. A vari-
able scoped to a request instance may contain a unique value
per request instance.

In a non-limiting illustrative example, a variable, SCAN_
FREQ, might be used to pass information regarding security
scanning frequency from an external function that manages
security, to the script for eventual reporting, by means of
variables in the database. In accordance with an embodiment
of the present invention, the security scanning frequency
variable is updated each time the validation scripts are
prepared for a particular target server. For example, if there
are three different target servers for which three different
requests have been prepared, three instances of the SCAN_
FREQ variable are stored into the database.

The script fragment might contain:

outline=outline & “Server found in scan schedule, fre-
quency is:” & SCAN_FREQ which concatenates the
declared value of SCAN_FREQ in the script with the string
“Server found in scan schedule, frequency is:” and places
the result in a script variable named outline. During script
assembly, an external service associated with the SCAN_
FREQ variable is invoked for the current request, and a
value is returned and placed into the variable table of the
database. The variables appropriate to the request are then
assembled into the script, which is being prepared by the
system.

Continuing with the non-limiting illustrative embodi-
ment, a variable table in the database can contain three rows
(one for each of three requests that have been initiated):

SCAN_FREQ instance 1, value “annually”, scoped to
request 1 (server 9.2.3.4);

SCAN_FREQ instance 2, value “biennially”, scoped to
request 2 (server 9.5.6.7); and

SCAN_FREQ instance 3, value “weekly”, scoped to
request 3 (server 9.9.8.25).

The assembled script for request 2 can contain:
SCAN_FREQ="biennally”
outline=outline & “Server found in scan schedule, frequency
is:” & SCAN_FREQ

In accordance with an embodiment of the present inven-
tion, if request 2 is re-run at a later time, the external service
can report a different value for SCAN_FREQ for request 2
(server 9.5.6.7). Embodiments of the present invention allow
reporting the different value, but also maintain the contex-
tual integrity of SCAN_FREQ instances 1 and 3 as well,
which is accomplished by scoping the variable to the
request/target server.

The assembled script for request 2 can now contain:
SCAN_FREQ="“monthly”
outline=outline & “Server found in scan schedule, frequency
is:” & SCAN_FREQ

According to an embodiment of the present invention,
questions are stored in a database and contain an id, a name,
and a description. By using a generic join table, customer

30

35

40

45

50

60

10

policies are joined with questions, script fragments, and
variables. This can provide more flexibility than explicit use
of foreign key relationships within joined tables. By using a
generic external join table, a level of indirection is intro-
duced, which provides greater flexibility. For example,
tables can be joined dynamically without making schema
changes if relationships between tables are added or
removed.

FIG. 4 illustrates a flow diagram for a method of popu-
lating a library of script fragments, according to an exem-
plary embodiment of the present invention. In accordance
with an embodiment of the present invention, questions,
scripts, literals, and the joins of these items are performed
via, for example, a web user interface (Ul) to create, update,
and delete these items, and to gather object details such as
names, script file paths, values, etc. Alternatively, in a batch
load option, questions, scripts, literals, and the joins of these
items are performed by running programs, for example,
JAVA® programs, that read comma separated values (CSV)
files to gather object details such as names, script file paths,
values, etc. Questions are joined to checklists, scripts are
joined to questions, and literals are joined to questions.
Variables can refer to values that are not known until
runtime, and are associated with specific questions, while
literals can refer to constants having a pre-defined fixed
value that are associated with specific questions. The join of
scripts to questions specifies a relative order of execution of
the scripts, in a step column.

The method 400 includes adding question details 401,
running a function (e.g., PutQuestion) to insert the question
into a database 403, and evaluating a script fragment to
determine whether the script fragment needs editing 405. If
yes, the method proceeds to block 407, where the script
fragment is edited. For example, if literals should be
replaced by variables, this is performed, and literal details
are written to the database. Literals can be replaced with
variables, and variables can be populated with values read
from the database at the time of script assembly.

If no at block 405, a query is made at block 409 whether
literals are being replaced by variables? If yes, at block 411,
a function (e.g., PutLiteral) is run to insert the variables into
the database. If no at block 409, the method proceeds to
block 413 where a scriptlet step is determined, and to block
415 where scriptlet details are added to the database. At
block 417, a function (e.g., PutScript) is run to insert the
script into the database. At blocks 419, 421 and 423, joiners
are run to join questions to checklists, scripts to questions,
and literals to questions.

FIG. 4 describes a process of developing or customizing
scriptlets and loading them into a repository. When doing
this it may be necessary to declare literals, to declare
variables, to add the scriptlet itself to the inventory, and to
describe when the scriptlet should be invoked, and under
what circumstances. According to an embodiment, popula-
tion of the database elements, which will drive the script
assembly, is performed during the administrative and pre-
paratory phases. During the operational phase, the database
may also be used to retain information regarding a validation
attempt. Such information might include history information
such as timestamps, target server ids, and completion status.

FIG. 5 illustrates a flow diagram for assembly of a script,
according to an exemplary embodiment of the present
invention. In general, a validation request is accepted as
input, appropriate target servers are identified, external
sources are interrogated for additional required information,
if any, and script assembly is performed as appropriate to the

US 9,450,985 B2

11

target server operating system (OS). The assembled script is
pushed to the target server, invoked, and its outputs are
retrieved, and reported.

The method 500 includes receiving a validation request
501, for example, a user request, and obtaining parameters
for the script and writing variables to a database 503. For
example, script parameters and values are written to a
variables table in the database. Script parameters can
include, for example, customer account id, geography (e.g.,
from the request) and middleware installed on a target.

At block 505, it is queried whether at least some of the
script parameters are to be obtained from external data
sources. If yes, at block 507, the data from external sources
is obtained and variables based on the data from the external
sources are written to a database (e.g., written to variables
table). Variables can be scoped globally, to a checklist, and
to a request. In addition, variables can be defined per the
target OS scripting language.

If no at block 505, the method proceeds to block 509,
where it is queried whether there are any checklist rules that
correspond to one or more variables for the request. For
example, a checklist is selected for the validation attempt
that is appropriate to the target server’s customer, account,
geography, middleware and/or software. If there is no hit at
block 509, then a given checklist is removed from the
candidate list, and the process moves to the next checklist to
see if any rules for that checklist correspond to variables of
the request. If a rule is found at block 509, then it is queried
at block 511 whether the checklist rule that corresponds to
a variable for the request is satisfied. If the rule is not
satisfied at block 511, the method returns to block 509 to
look for additional checklist rules that correspond to one or
more variables for the request. If no rules are satisfied at
block 511, and no more checklist rules correspond to vari-
ables for the request, the method proceeds to block 512,
where it is determined that no rules were met, a user is
notified of this result, and the process ends.

If a rule is satisfied at block 511, a checklist is selected,
and the method proceeds to block 513. For example, in a
non-limiting illustrative embodiment, A, B are exemplar
queries for checklist 1. A) l:name=‘Account’ and
value="IGA’; B) l:name=‘Geography’ and value="NA’. If
both A and B are met at block 511, then select Checklist 1,
and proceed to block 513.

At block 513, it is queried whether there are outstanding
checklist questions that must be addressed, in other words,
has the checklist been completed? If no outstanding check-
list questions (i.e., the checklist has been completed), then
the method proceeds to blocks 515, 517 and 519, where
helper functions, variables and entry points are appended to
an output script, the assembled script is generated, and the
assembly process ends. Non-helper functions can also be
appended to an output script, with a list of the non-helper
function names being added to an array and appended to the
output script. Trailer helper functions, which perform post-
processing functions such as, for example, clean-up of
temporary files on a target, can also be appended to an output
script.

If it is determined that there are questions for a checklist
(i.e., the checklist has not been completed) at block 513, then
the method proceeds to blocks 521, 523 and 525, where it is
determined whether and what script fragments are needed
based on responses to questions in the checklist. For
example, the checklist may inquire as to the nature of the
target OS, and if the target OS is a Linux® variant, a UNIX®
script can be assembled out of variables and script fragments
determined by responses to additional checklist questions. If

20

30

40

45

55

12

the target OS is a Windows® variant, a Windows® script
can be assembled out of variables and script fragments
determined by responses to additional checklist questions.

Referring to block 521, it is determined whether any script
fragments correspond to the questions for the checklist, and
if so, at block 523 whether there are any rules for those script
fragments. If so, it is determined at block 525 whether those
rules are satisfied, and, if a rule is satisfied, the correspond-
ing script fragment is added to an output script and an entry
point is added to a list. The list refers to a list of script
fragments (e.g., functions) to be executed.

If it is determined at block 521 that no script fragments
correspond to a question for the checklist, the method
returns to block 513 to check if there are more questions. If
it is determined at block 523 that there are no rules for a
script fragment from block 521, the method returns to block
521 to check if there are more script fragments. If it is
determined at block 525 that a rule for a script fragment is
not satisfied, the method returns to block 523 to check
whether there are more rules. If it is determined at block 525
that a rule for a script fragment is satisfied, the method
proceeds to block 527, where the script fragment for which
the rule is satisfied is added to the script being assembled
and an entry point is added to the list.

The questions, variables, and script fragments associated
with a checklist are retrieved by means of querying the
database join tables and assembling the results (with appro-
priate scripting syntax) into an output script.

FIG. 6 illustrates a process flow performed after script
assembly, according to an exemplary embodiment of the
present invention. Referring to FIG. 6, a method 600
includes pushing an assembled script and helper files, if any
to the target server 601, invoking the script 603, retrieving
the script outputs 605, and reporting and storing the results
of the script outputs 607.

FIG. 7 illustrates a script fragment 700, according to an
exemplary embodiment of the present invention. FIG. 8
illustrates a portion of a validation report 800 according to
an exemplary embodiment of the present invention. As can
be seen in FIG. 8, the report includes information on whether
certain elements of a target platform meet requirements of a
source environment. In accordance with an embodiment, the
elements may correspond to identifiers, authentication,
directories, confidentiality and permissions.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions

US 9,450,985 B2

13

recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored

10

15

20

25

30

35

40

45

50

55

60

65

14

in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

One or more embodiments can make use of software
running on a general-purpose computer or workstation. With
reference to FIG. 9, in a computing node 910 there is a
computer system/server 912, which is operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well-known computing systems, environments, and/or con-
figurations that may be suitable for use with computer
system/server 912 include, but are not limited to, personal
computer systems, server computer systems, thin clients,
thick clients, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puter systems, mainframe computer systems, and distributed
cloud computing environments that include any of the above
systems or devices, and the like.

Computer system/server 912 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 912 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

US 9,450,985 B2

15

As shown in FIG. 9, computer system/server 912 in
computing node 910 is shown in the form of a general-
purpose computing device. The components of computer
system/server 912 may include, but are not limited to, one or
more processors or processing units 916, a system memory
928, and a bus 918 that couples various system components
including system memory 928 to processor 916.

The bus 918 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

The computer system/server 912 typically includes a
variety of computer system readable media. Such media
may be any available media that is accessible by computer
system/server 912, and it includes both volatile and non-
volatile media, removable and non-removable media.

The system memory 928 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 930 and/or cache memory
932. The computer system/server 912 may further include
other removable/non-removable, volatile/nonvolatile com-
puter system storage media. By way of example only,
storage system 934 can be provided for reading from and
writing to a non-removable, non-volatile magnetic media
(not shown and typically called a “hard drive”). Although
not shown, a magnetic disk drive for reading from and
writing to a removable, non-volatile magnetic disk (e.g., a
“floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
CD-ROM, DVD-ROM or other optical media can be pro-
vided. In such instances, each can be connected to the bus
918 by one or more data media interfaces. As depicted and
described herein, the memory 928 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention. A program/utility 940, hav-
ing a set (at least one) of program modules 942, may be
stored in memory 928 by way of example, and not limita-
tion, as well as an operating system, one or more application
programs, other program modules, and program data. Each
of the operating system, one or more application programs,
other program modules, and program data or some combi-
nation thereof, may include an implementation of a net-
working environment. Program modules 942 generally carry
out the functions and/or methodologies of embodiments of
the invention as described herein.

Computer system/server 912 may also communicate with
one or more external devices 914 such as a keyboard, a
pointing device, a display 924, etc., one or more devices that
enable a user to interact with computer system/server 912,
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 912 to communicate with
one or more other computing devices. Such communication
can occur via Input/Output (I/O) interfaces 922. Still yet,
computer system/server 912 can communicate with one or
more networks such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 920. As depicted,
network adapter 920 communicates with the other compo-
nents of computer system/server 912 via bus 918. It should
be understood that although not shown, other hardware

20

25

30

40

45

50

16

and/or software components could be used in conjunction
with computer systen/server 912. Examples, include, but
are not limited to: microcode, device drivers, redundant
processing units, external disk drive arrays, RAID systems,
tape drives, and data archival storage systems, etc.

Although illustrative embodiments of the present inven-
tion have been described herein with reference to the accom-
panying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various
other changes and modifications may be made by one skilled
in the art without departing from the scope or spirit of the
invention.

What is claimed is:
1. A method for validation of a target environment,
comprising:
assembling a validation script from a plurality of script
fragments, wherein a script fragment is a component of
the validation script that links a data variable of a
plurality of data variables with a definition of the data
variable and places a result of the linking in a script
variable;
inserting the assembled validation script into the target
environment;
executing the validation script in the target environment;
gathering results of the executing; and
reporting the results to at least one user;
wherein assembling the validation script comprises:
determining a characteristic of the target environment
corresponding to the definition;
determining that a given script fragment corresponds to
the characteristic of the target environment;
obtaining parameters for the validation script and writ-
ing the plurality of data variables to a database;
querying whether any checklist rules correspond to one
or more of the data variables;
querying, when a checklist rule corresponds to one or
more of the data variables, whether the checklist rule
has been satisfied;
selecting a checklist having the satisfied checklist rule;
querying whether the selected checklist has been com-
pleted; and
appending at least one of a functional component and
a data component to the validation script upon deter-
mining that the selected checklist has been com-
pleted; and
wherein the assembling, inserting, executing, gathering
and reporting steps are performed by a computer sys-
tem comprising a memory and at least one processor
coupled to the memory.
2. The method according to claim 1, further comprising:
invoking an external source to supply the characteristic of
the target environment.
3. The method according to claim 1, further comprising:
determining that the script fragments correspond to
requirements of a customer.
4. The method according to claim 1, further comprising:
creating and storing the plurality of script fragments,
wherein the script fragments are re-usable.
5. The method according to claim 1, further comprising:
declaring the plurality of data variables in the script
fragments; and
populating the data variables with values obtained from
an external source;
wherein the populating comprises dynamically invoking
an external agency to supply the values that are locally
unavailable.

US 9,450,985 B2

17

6. The method according to claim 1, further comprising:

codifying a plurality of customer requirements as a set of
questions; and

using one or more of the script fragments to answer the set
of the questions.

7. The method according to claim 1, further comprising:

scoping at least a first one of the data variables globally,
at least a second one of the data variables to a checklist
and at least a third one of the data variables to a request.

8. A system for validation of a target environment, com-
prising:

a memory and at least one processor operatively coupled

to the memory;

a validation module, executed via the at least one proces-
sor, and capable of assembling a validation script from
a plurality of script fragments, and inserting the
assembled validation script into the target environment,
wherein a script fragment is a component of the vali-
dation script that links a data variable of a plurality of
data variables with a definition of the data variable and
places a result of the linking in a script variable;

a target module operatively coupled to the validation
module and executed via the at least one processor, and
capable of executing the validation script in the target
environment;

wherein the validation module is further capable of gath-
ering results of the executing; and
a reporting module operatively coupled to the valida-

tion module and executed via the at least one pro-

cessor, and capable of reporting the results to at least

one user;

wherein assembling the validation script comprises:

determining a characteristic of the target environ-
ment corresponding to the definition;

determining that a given script fragment corresponds
to the characteristic of the target environment;

obtaining parameters for the validation script and
writing the plurality of data variables to a data-
base;

querying whether any checklist rules correspond to
one or more of the data variables;

querying, when a checklist rule corresponds to one
or more of the data variables, whether the check-
list rule has been satisfied;

selecting a checklist having the satisfied checklist
rule;

querying whether the selected checklist has been
completed; and

appending at least one of a functional component and
a data component to the validation script upon
determining that the selected checklist has been
completed.

9. The system according to claim 8, wherein the validation
module is further capable of invoking an external source to
supply the characteristic of the target environment.

10. The system according to claim 8, further comprising
a preparatory module capable of creating and storing the
plurality of script fragments, wherein the script fragments
are re-usable.

11. The system according to claim 8, wherein the valida-
tion module is further capable of:

declaring the plurality of data variables in the script
fragments; and

10

15

20

25

30

35

40

45

50

60

18

populating the data variables with values obtained from
an external source;
wherein the populating comprises dynamically invoking
an external agency to supply the values that are locally
unavailable.
12. The system according to claim 8, wherein the vali-
dation module is further capable of:
codifying a plurality of customer requirements as a set of
questions; and
using one or more of the script fragments to answer the set
of the questions.
13. The system according to claim 8, wherein the vali-
dation module is further capable of:
scoping at least a first one of the data variables globally,
at least a second one of the data variables to a checklist
and at least a third one of the data variables to a request.
14. A computer program product for server validation, the
computer program product comprising a computer readable
storage medium having program instructions embodied
therewith, the program instructions executable by a proces-
sor to cause the processor to perform a method comprising:
assembling a validation script from a plurality of script
fragments, wherein a script fragment is a component of
the validation script that links a data variable of a
plurality of data variables with a definition of the data
variable and places a result of the linking in a script
variable;
inserting the assembled validation script into the target
environment;
executing the validation script in the target environment;
gathering results of the executing; and
reporting the results to at least one user;
wherein assembling the validation script comprises:
determining a characteristic of the target environment
corresponding to the definition;
determining that a given script fragment corresponds to
the characteristic of the target environment;
obtaining parameters for the validation script and writ-
ing the plurality of data variables to a database;
querying whether any checklist rules correspond to one
or more of the data variables;
querying, when a checklist rule corresponds to one or
more of the data variables, whether the checklist rule
has been satisfied;
selecting a checklist having the satisfied checklist rule;
querying whether the selected checklist has been com-
pleted; and
appending at least one of a functional component and
a data component to the validation script upon deter-
mining that the selected checklist has been com-
pleted.
15. The method according to claim 1, wherein assembling
the validation script further comprises:
retrieving the given script fragment; and
incorporating the given script fragment into the validation
script using a scripting syntax.
16. The system according to claim 8, wherein assembling
the validation script further comprises:
retrieving the given script fragment; and
incorporating the given script fragment into the validation
script using a scripting syntax.

#* #* #* #* #*

